Critical water needs to sustain freshwater ecosystems in the Mitchell and emerging risks from tilapia invasions

Ben Stewart-Koster¹, Kaitlyn O'Mara¹, Bianca Molinari¹, Mike Venarsky¹, Glenn McGregor², Cameron Schulz², Jonathan Marshall², Christopher Ndehedehe¹, Julie Robins³, Susannah Leahy³, David Crook⁴, Stuart Bunn¹

¹ Australian Rivers Institute, Griffith University, Australia

- ² Queensland Department of Environment and Science, Brisbane, Queensland, Australia
- ³ Queensland Department of Agriculture and Fisheries, Agri-Science Queensland
- ⁴ Centre for Freshwater Ecosystems, La Trobe University, Australia

National Environmental Science Programme

Collaborations with Traditional Custodians in the Mitchell

We acknowledge the Traditional Owners of the Country of the Mitchell Catchment: Western Yalanji, Kuku Djungan, Mbarbaram, Wokomin, Kokominjena, Kokoberra, Kunjen.

Kowanyama Aboriginal Land and Natural Resource Management Office

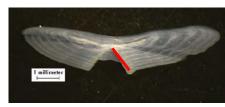
• Floodplain site selection and access to sampling locations

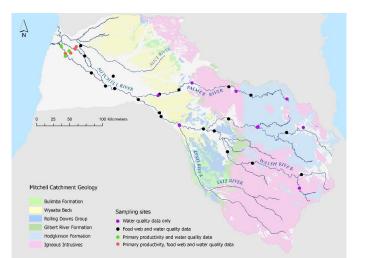
Mitchell River Traditional Custodians Advisory Group

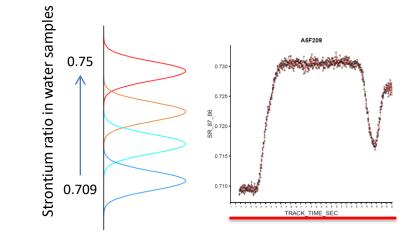
- Managed by Traditional Owners from clans from four tribal groups in the Middle and Upper Mitchell
 - Mbabaram
 - Wokomin,
 - Kuku Djangan and
 - Western Yalanji
- Provided Bama Cultural Intelligence Training
- Site selection and access to sampling for parallel project on tilapia invasion

General approach

- Aquatic ecosystem connectivity fish movements across the entire catchment
 - Otolith microchemistry
 - Stable isotopes
- Tilapia population extent and movement
 - Electrofishing surveys
 - Otolith microchemistry
- Preferred tilapia habitat and risk areas for spread
 - Habitat assessments across the catchment
- Tilapia diet
 - Stomach contents analysis

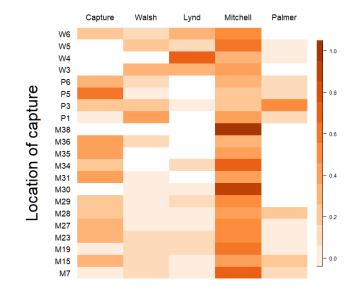


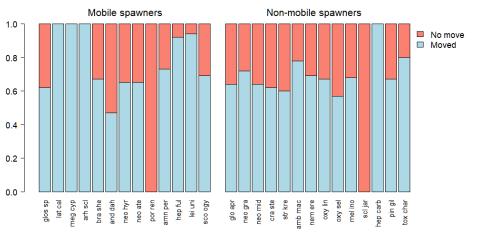



Connectivity of the Mitchell River Catchment

- Otolith microchemistry
 - Catchment geology produces spatial variation in ratio of strontium isotopes
 - Trace the migration history of freshwater fish
 - Trace growth and migration of fishery caught barramundi

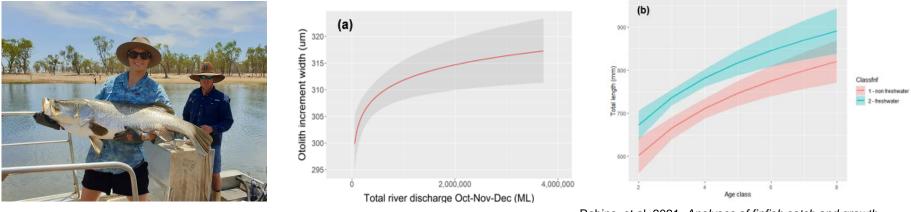
Halliday et al. 2011. Proc. Roy Soc QLD




Fish movement over their lifetimes

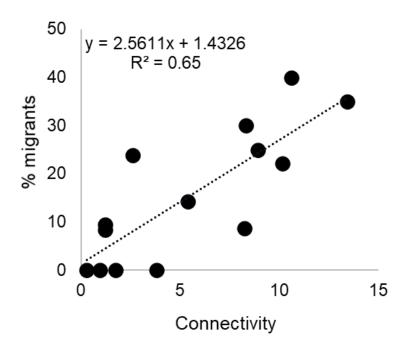
- Generally high levels of fish across all species
 - Over 900 fish analysed

• Mitchell main channel is a key source habitat for fish


Subcatchment of birth

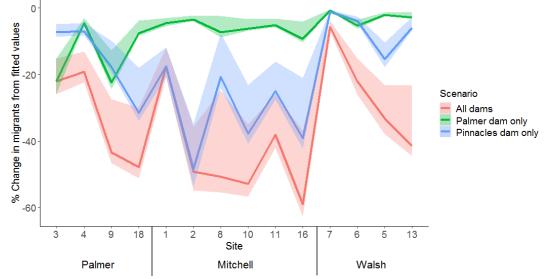
Barramundi growth - freshwater

Access to freshwater on the floodplain is critical for fishery caught barramundi


- Years with higher river discharge result in greater barramundi growth
- Barramundi that reside in freshwater have higher growth than those in the estuary

Robins, et al. 2021, Analyses of finfish catch and growth

Potential impact of dams on fish migration


- We used an analysis of connectivity and fish migration to predict the impact of dams, if no environmental flow measures are taken
- Scenarios of 1-5 dams built around the Mitchell catchment
 - Up to 60% loss of fish migration due to loss of connectivity from flow alteration

O'Mara et al. (2021) Science of the Total Environment

Potential impact of dams on fish migration

- We used an analysis of connectivity and fish migration to predict the impact of dams, if no environmental flow measures are taken
- Scenarios of 1-5 dams built around the Mitchell catchment
 - Up to 60% loss of fish migration due to loss of connectivity from flow alteration

O'Mara et al. (2021) Science of the Total Environment

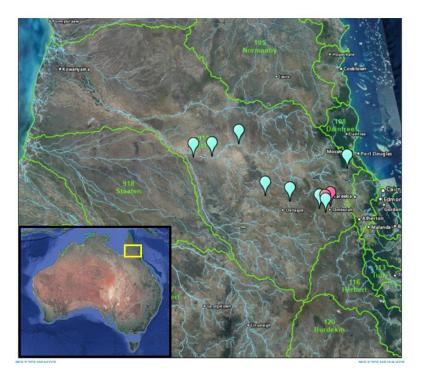
Tilapia

- Tropical freshwater fish from the Cichlidae family, native to Africa and the southwestern Middle East
- Tolerant to a range of environmental conditions including high salinity and low oxygen
- Can reproduce year round in water temperatures >25°C
- Rapid population growth 12.5 ton of tilapia were removed from a pond in Cairns after it was stocked with 6-8 individuals 18 months prior

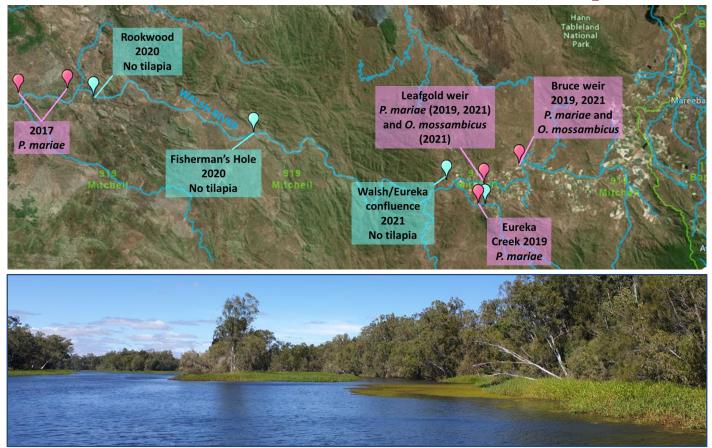
Tilapia in the Mitchell catchment

Spotted tilapia

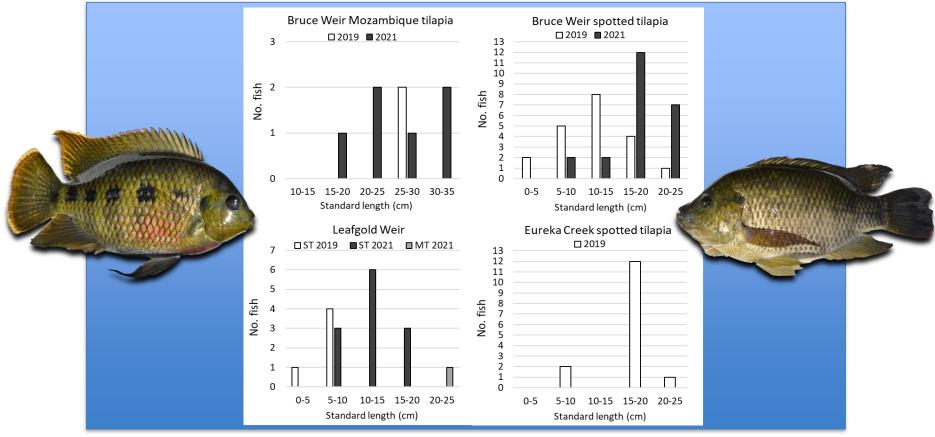
- Grows to 25-30 cm
- Nest builder and guarder
- Brood guarder
- Established in Aus in 1990's

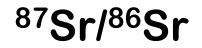


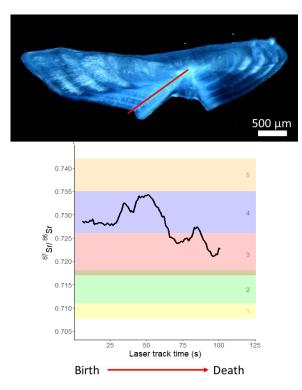
Mozambique tilapia

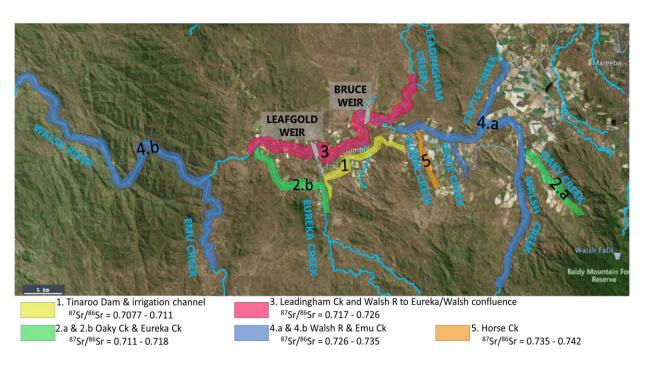

- Grows to 33 cm (females)
 44 cm (males)
- Nest builder and guarder
- Maternal mouthbrooder
- Established in Aus in 1970's

Tilapia in the Mitchell catchment


- Found throughout Queensland in eastern draining catchments
- In 2008, tilapia were found in Eureka Creek, Walsh River.
- Rotenone poisoning of Eureka
 Creek.
- In 2017 tilapia were found in the Walsh River


Current extent of Mitchell tilapia

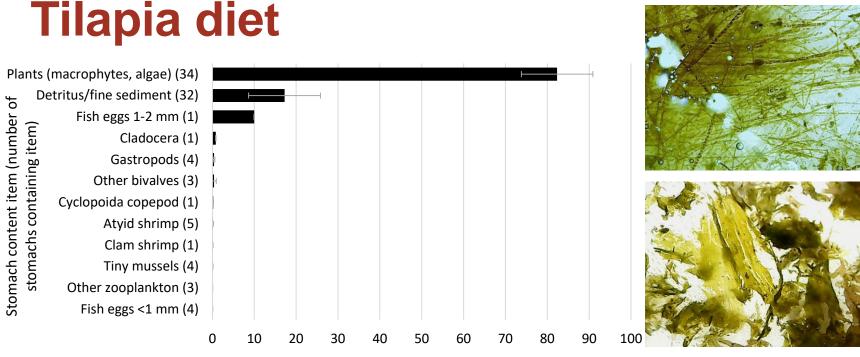



Tilapia population growth

Tilapia movement

Tilapia movement

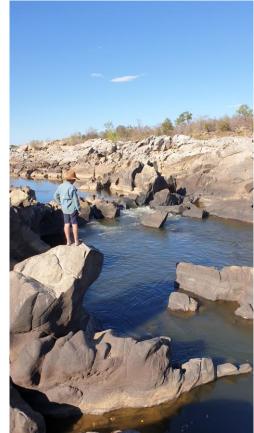
- All fish caught in Leafgold Weir in 2019 likely originated from Eureka Creek
- Eureka Creek tilapia highly resident
- No evidence of movement downstream of Eureka Creek



Preferred tilapia habitat and catchment areas most at risk of colonisation

- Abundant macrophytes
- Lower flow
- Deeper areas (>1m)

Mean % of stomach contents taken up by item



Conclusions...

- The biodiversity and ecosystem function of the Mitchell River catchment is dependent on flow-mediated connectivity
- The fish movement around the catchment indicates that planning for WRD needs to consider potential impacts across the entire catchment
- There is an established and growing tilapia population in the Walsh catchment
- Creeks and wetlands are at risk of tilapia colonisation
- Movement of tilapia varies between the established locations but occurs in both species and at all ages
- Tilapia primarily consume plant material

Recommendations

- Early warning through effective reporting protocols and control existing populations through manual removal
- Maintain ecosystem integrity of middle and upper catchment main-channels where ideal tilapia habitat is naturally rare/absent
- Weirs and dams throughout the catchment may provide ideal stepping-stone habitat for the species

National Environmental Science Programme

This work is supported through funding from the Australian Government's National Environmental Science Program

For more information please contact:

- Name: Ben Stewart-Koster and Kaitlyn O'Mara
- Phone: 3735 9206 <u>https://www.nespnorthern.edu.au/projects/nesp/environmental-water-needs-mitchell-river/</u>
- Email: <u>b.stewart-koster@griffith.edu.au</u> kaitlyn.omara@griffith.edu.au

www.nespnorthern.edu.au